637 research outputs found

    Systematic Differences due to High Energy Hadronic Interaction Models in Air Shower Simulations in the 100 GeV-100 TeV Range

    Full text link
    The predictions of hadronic interaction models for cosmic-ray induced air showers contain inherent uncertainties due to limitations of available accelerator data and theoretical understanding in the required energy and rapidity regime. Differences between models are typically evaluated in the range appropriate for cosmic-ray air shower arrays (101510^{15}-102010^{20} eV). However, accurate modelling of charged cosmic-ray measurements with ground based gamma-ray observatories is becoming more and more important. We assess the model predictions on the gross behaviour of measurable air shower parameters in the energy (0.1-100 TeV) and altitude ranges most appropriate for detection by ground-based gamma-ray observatories. We go on to investigate the particle distributions just after the first interaction point, to examine how differences in the micro-physics of the models may compound into differences in the gross air shower behaviour. Differences between the models above 1 TeV are typically less than 10%. However, we find the largest variation in particle densities at ground at the lowest energy tested (100 GeV), resulting from striking differences in the early stages of shower development.Comment: 9 pages, 6 figures. Published by Phys Rev

    Latest news from the HAWC outrigger array

    Get PDF
    The High Altitude Water Cherenkov (HAWC) observatory is a very high energy gamma-ray detector located in Mexico. In late 2018, the HAWC collaboration completed a major upgrade consisting of the addition of a sparse outrigger array of 345 small water Cherenkov detectors (WCDs) surrounding the 300 WCDs of the main array and extending the instrumented area by a factor of 4. It provides an improved reconstruction of the showers whose core and footprint are not well contained in the array and increases the effective area in the range of a few TeV to beyond 100 TeV. This improvement in sensitivity will help to have a better understanding of the Galactic sources that accelerate particles up to the knee of the cosmic ray spectrum. In this contribution, we will show the current status, the performance, and the first results from the HAWC outrigger array

    TARGET: A Digitizing And Trigger ASIC For The Cherenkov Telescope Array

    Full text link
    The future ground-based gamma-ray observatory Cherenkov Telescope Array (CTA) will feature multiple types of imaging atmospheric Cherenkov telescopes, each with thousands of pixels. To be affordable, camera concepts for these telescopes have to feature low cost per channel and at the same time meet the requirements for CTA in order to achieve the desired scientific goals. We present the concept of the TeV Array Readout Electronics with GSa/s sampling and Event Trigger (TARGET) Application Specific Circuit (ASIC), envisaged to be used in the cameras of various CTA telescopes, e.g. the Gamma-ray Cherenkov Telescope (GCT), a proposed 2-Mirror Small-Sized Telescope, and the Schwarzschild-Couder Telescope (SCT), a proposed Medium-Sized Telescope. In the latest version of this readout concept the sampling and trigger parts are split into dedicated ASICs, TARGET C and T5TEA, both providing 16 parallel input channels. TARGET C features a tunable sampling rate (usually 1 GSa/s), a 16k sample deep buffer for each channel and on-demand digitization and transmission of waveforms with typical spans of ~100 ns. The trigger ASIC, T5TEA, provides 4 low voltage differential signal (LVDS) trigger outputs and can generate a pedestal voltage independently for each channel. Trigger signals are generated by T5TEA based on the analog sum of the input in four independent groups of four adjacent channels and compared to a threshold set by the user. Thus, T5TEA generates four LVDS trigger outputs, as well as 16 pedestal voltages fed to TARGET C independently for each channel. We show preliminary results of the characterization and testing of TARGET C and T5TEA.Comment: 6 pages, 8 figures, Proceedings of the 6th International Symposium on High-Energy Gamma-Ray Astronomy (Gamma2016

    A Template-based gamma-ray Reconstruction Method for Air Shower Arrays

    Get PDF
    We introduce a new Monte Carlo template-based reconstruction method for air shower arrays, with a focus on shower core and energy reconstruction of γ\gamma-ray induced air showers. The algorithm fits an observed lateral amplitude distribution of an extensive air shower against an expected probability distribution using a likelihood approach. A full Monte Carlo air shower simulation in combination with the detector simulation is used to generate the expected probability distributions. The goodness of fit can be used to discriminate between γ\gamma-ray and hadron induced air showers. As an example, we apply this method to the High Altitude Water Cherenkov γ\gamma-ray Observatory and its recently installed high-energy upgrade. The performance of this method and the applicability to air shower arrays with mixed detector types makes it a promising reconstruction approach for current and future instruments

    Employment status and work-related problems of gastrointestinal cancer patients at diagnosis: a cross-sectional study

    Get PDF
    Objective To assess the employment status of patients with gastrointestinal cancer at diagnosis and to examine work-related problems of employed patients. Design New, consecutive patients were included at the Gastrointestinal Oncology Center Amsterdam, a one-stop, rapid access diagnostic assessment centre. Patients were interviewed on their employment status by a nurse. If (self-) employed, patients were asked to self-report on work-related problems, perceived distress (0-10), cancer-related problems, fatigue (MFI-20, range 4-20) and work ability (three WAI questions, range 0-10). Results Of all 333 included new consecutive patients (age range 32-89 years), 95 patients (28%) were (self-) employed at time of diagnosis, 179 (54%) were pensioners, and 59 were not working (18%). For the assessment of work-related problems, 45 (47%) of these 95 employed patients with cancer participated. Their mean age was 56 years, and patients had oesophageal/stomach (49%), colorectal (18%) or hepatic/pancreatic/biliary cancer (33%). Half of the employed patients (49%) were still at work, while 51% were on sick leave. The main reasons for sick leave were stress (35%), (scheduled) operation (26%), fatigue (17%) and pain (13%). Most patients on sick leave (70%) had no contact with their own occupational physician, although the majority (67%) would like to continue to work. Work-related problems were experienced by 73% of working patients. The mean work ability was 5.4, the mean general fatigue score was 11.5, and the mean distress score was 4.7. Employed patients on sick leave reported a lower work ability, more fatigue and higher distress but no more cancer-related problems compared with those still working. Conclusion A quarter of all patients with gastrointestinal cancer seen at an oncological centre are employed at time of diagnosis, and of these employed patients, 73% experience work-related problems. During diagnosis and treatment, information and support on work-related issues should be offered to patients with cancer as an essential part of high-quality oncological car

    The first GCT camera for the Cherenkov Telescope Array

    Full text link
    The Gamma Cherenkov Telescope (GCT) is proposed to be part of the Small Size Telescope (SST) array of the Cherenkov Telescope Array (CTA). The GCT dual-mirror optical design allows the use of a compact camera of diameter roughly 0.4 m. The curved focal plane is equipped with 2048 pixels of ~0.2{\deg} angular size, resulting in a field of view of ~9{\deg}. The GCT camera is designed to record the flashes of Cherenkov light from electromagnetic cascades, which last only a few tens of nanoseconds. Modules based on custom ASICs provide the required fast electronics, facilitating sampling and digitisation as well as first level of triggering. The first GCT camera prototype is currently being commissioned in the UK. On-telescope tests are planned later this year. Here we give a detailed description of the camera prototype and present recent progress with testing and commissioning.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589

    Accelerator measurements of magnetically-induced radio emission from particle cascades with applications to cosmic-ray air showers

    Get PDF
    For fifty years, cosmic-ray air showers have been detected by their radio emission. We present the first laboratory measurements that validate electrodynamics simulations used in air shower modeling. An experiment at SLAC provides a beam test of radio-frequency (RF) radiation from charged particle cascades in the presence of a magnetic field, a model system of a cosmic-ray air shower. This experiment provides a suite of controlled laboratory measurements to compare to particle-level simulations of RF emission, which are relied upon in ultra-high-energy cosmic-ray air shower detection. We compare simulations to data for intensity, linearity with magnetic field, angular distribution, polarization, and spectral content. In particular, we confirm modern predictions that the magnetically induced emission in a dielectric forms a cone that peaks at the Cherenkov angle and show that the simulations reproduce the data within systematic uncertainties.Comment: 5 pages, 7 figure

    Antarctic Surface Reflectivity Measurements from the ANITA-3 and HiCal-1 Experiments

    Get PDF
    The primary science goal of the NASA-sponsored ANITA project is measurement of ultra-high energy neutrinos and cosmic rays, observed via radio-frequency signals resulting from a neutrino- or cosmic ray- interaction with terrestrial matter (atmospheric or ice molecules, e.g.). Accurate inference of the energies of these cosmic rays requires understanding the transmission/reflection of radio wave signals across the ice-air boundary. Satellite-based measurements of Antarctic surface reflectivity, using a co-located transmitter and receiver, have been performed more-or-less continuously for the last few decades. Satellite-based reflectivity surveys, at frequencies ranging from 2--45 GHz and at near-normal incidence, yield generally consistent reflectivity maps across Antarctica. Using the Sun as an RF source, and the ANITA-3 balloon borne radio-frequency antenna array as the RF receiver, we have also measured the surface reflectivity over the interval 200-1000 MHz, at elevation angles of 12-30 degrees, finding agreement with the Fresnel equations within systematic errors. To probe low incidence angles, inaccessible to the Antarctic Solar technique and not probed by previous satellite surveys, a novel experimental approach ("HiCal-1") was devised. Unlike previous measurements, HiCal-ANITA constitute a bi-static transmitter-receiver pair separated by hundreds of kilometers. Data taken with HiCal, between 200--600 MHz shows a significant departure from the Fresnel equations, constant with frequency over that band, with the deficit increasing with obliquity of incidence, which we attribute to the combined effects of possible surface roughness, surface grain effects, radar clutter and/or shadowing of the reflection zone due to Earth curvature effects.Comment: updated to match publication versio
    • …
    corecore